
Meta-Manager: A Tool for Collecting and Exploring Meta
Information about Code

Amber Horvath
ahorvath@cs.cmu.edu

Human-Computer Interaction
Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Andrew Macvean
amacvean@google.com

Google
Seattle, Washington, USA

Brad A. Myers
bam@cs.cmu.edu

Human-Computer Interaction
Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

ABSTRACT
Modern software engineering is in a state of flux. With more de-
velopment utilizing AI code generation tools and the continued
reliance on online programming resources, understanding code and
the original intent behind it is becoming more important than it
ever has been. To this end, we have developed the “Meta-Manager”,
a Visual Studio Code extension, with a supplementary browser
extension, that automatically collects and organizes changes made
to code while keeping track of the provenance of each part of the
code, including code that has been AI-generated or copy-pasted
from popular programming resources online. These sources and
subsequent changes are represented in the editor and may be ex-
plored using searching and filtering mechanisms to help developers
answer historically hard-to-answer questions about code, its prove-
nance, and its design rationale. In our evaluation of Meta-Manager,
we found developers were successfully able to use it to answer
otherwise unanswerable questions about an unfamiliar code base.

CCS CONCEPTS
• Software and its engineering→Maintaining software; •Human-
centered computing→Collaborative and social computing systems
and tools.

KEYWORDS
Code history, code provenance, code comprehension, design ratio-
nale, software engineering, sensemaking, meta-information
ACM Reference Format:
Amber Horvath, AndrewMacvean, and Brad A. Myers. 2024. Meta-Manager:
A Tool for Collecting and Exploring Meta Information about Code. In Pro-
ceedings of the CHI Conference on Human Factors in Computing Systems
(CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3613904.3642676

1 INTRODUCTION
Software engineering is a discipline about informationmanagement.
When writing code, software engineers are typically managing
many different tasks and questions [65]. While higher level goals,
such as “implement this feature,” are typically captured through Git

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642676

commit messages or pull request details, lower level design details,
such as why a certain variable has a specific value and whether this
value was anticipated [42], are less often recorded due to the high
cost incurred in externalizing these thoughts during the implemen-
tation process [30, 53]. Nearly all developers are considering such
issues continually as they make implementation decisions [50]. De-
spite the prevalence of these decisions, these small rationale choices
can become completely lost to time, which can be problematic for
later developers who are trying to maintain or contribute to the
code base [5, 6, 61, 71, 72], with one study reporting that answering
such questions was considered “exhausting” by participants, yet
none of the participants recorded their own rationale [55]. Nonethe-
less, developers must continually understand unfamiliar code and
reckon with these questions, with maintainers of code spending
upwards of 50% of their time reading code written by themselves
or others [42, 55, 59].

Prior research has found that questions about design rationale,
or why code is the way that it is, are one of the most common
and significant blockers for developers when trying to understand
unfamiliar code [42, 47, 55]. Today’s strategies for trying to answer
these design rationale questions include recreating the history of
the code by asking other developers on the team about the code or
foraging through version control logs and associated documents
[42, 47]. This process is both time-consuming and prone to failure
if the developer who could answer the question either is no longer
available or has forgotten the answer, and developers can be reticent
to ask teammates for fear of interrupting them [55].

One way of keeping track of rationale and historical information
is through capturing more context about the code and its devel-
opment. In an example taken from Ko et. al. [42], it may not be
clear initially why a variable has a specific value, but, with the
added context that the developer logged this particular value and
then removed that log, a later developer can reason the author was
aware of the seemingly-erroneous value.

A key challenge is capturing more information at scale — a
developer typically makes hundreds of edits to their code during a
working day. A study of Visual Studio usage found that developers
spent approximately 28% of their 7-hour workday actively editing
code [1] — over many developers and many days, the number of
edits to some code can balloon into an amount too large to even
skim through. Given so many edits, how does one find and present
information that can help answer developers’ implicit questions
regarding code?

In this work, we explore automatically collecting, organizing,
and utilizing code history and development information to answer
developers’ historically “hard-to-answer” questions about code. We
focus on supporting later developers in answering questions related

https://doi.org/10.1145/3613904.3642676
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3642676

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Amber Horvath, Andrew Macvean, and Brad A. Myers

Figure 1: Meta-Manager as it appears within Visual Studio Code: the pane appears in the bottom area of the editor, with the
left area displaying a visualization of the history of the code file over time, while the right area displays information about a
particular code version. (1) is the scrubber, which the developer can use to move between code versions; (2) is the y-axis, which
denotes the lines of code within the file; (3) is the x-axis which represents all the editing “events” on the code, with 0 being the
start of the file and the right end being “now” (here there have been over 1,300 edit events); (4) is an identified event (in this
case, “Copied Code”) which appears along the timeline as an orange tick and label; (5) is the range of code lines as they changed
over time, with the color corresponding to the particular part of the code (in this case, blue for the activate function); (6) is the
search bar, which will search across all the code versions in the current file for the search text; (7) is the number of the version,
and includes a “Reset filter” button which will set the events along the x-axis back to their default state; (8) is the code box for
this particular code version – in this case, the activate function at version 33; (9) is the row of buttons for actions the user can
perform on a code version — the 3 leftmost gray buttons act as filters for the events, while the 2 blue buttons will search for
either the user’s selected code within the code version (“Search for Selected Code”) or search for paste events related to the
current copied code event; (10) is the description of the code version – in this case, since the user pasted code from ChatGPT,
the text describes the first search given to ChatGPT for the session from where the code was copied, and provides a button for
viewing more information about the ChatGPT thread.

to code design rationale, along with code history, provenance, and
relationships, given that these questions are significant blockers
for developers maintaining code [46, 47, 55].

We attempt to address this challenge of reconstructing prove-
nance information (the origin of the code) to help developers answer
their questions through our tool, Meta-Manager, a Visual Studio
Code [58] extension for TypeScript [57], with a supplementary
Google Chrome extension, which together capture code prove-
nance through an event-driven lens. Meta-Manager is designed to
support answering questions through not only collecting prove-
nance information, but supporting challenges of scale with a vi-
sualization for summarizing histories and supporting navigation
with interactive mechanisms for traversing through code histories.
Specifically, Meta-Manager addresses the following challenges to
make question-answering about code provenance and rationale
possible:

• Unwritten design rationale. Developers often do not want
to write down their lower-level implementation decisions

because they either do not believe the decisions to be impor-
tant [53] or because they are in a flow state, where pausing
to externalize their thoughts is too burdensome [55]. Meta-
Manager makes this externalization unnecessary in many
cases through automatically capturing information about the
developers’ activities such that each code version contains
meta-information that a developer would not normally write
down. This includes visited web pages, copy-paste sources,
search queries, and copies of web pages where the pasted
code came from. In other complex sensemaking domains,
these information trails helped later people better under-
stand the original user’s intent and rationale behind their
decision [38, 54] – we hypothesize that Meta-Manager, with
its scale and navigational support, will make this reasoning
possible for answering provenance and rationale questions
about code. Further, we hypothesize that since more code
is being generated by AI tools (developers in a recent study
report around 31 percent or more of their new code comes
from AI tools [51]) or pasted from online sources like Stack

Meta-Manager: A Tool for Collecting and Exploring Meta Information about Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Overflow, saving the queries used to find or generate that
code will be increasingly informative.

• Scale. Given the large amount of edits developers make
to code [1], the varying size of code bases, and amount of
potential noise in a data set comprised of such edits [78],
Meta-Manager collapses and prioritizes the provenance data
through multiple methods to assist later developers in their
comprehension of code history.
– Visualization and data organization. Meta-Manager col-
lapses edit events in a visualized “stream” across time,
with each stream corresponding to a particular code block,
such that developers can, with a glance, glean when blocks
of code are introduced or removed, moved, and so on. In
this way, the visualization may itself answer some devel-
oper questions about the code through summarizing its
history. Our visualization, in conjunction with its high-
lighting of important editing events, is a novel interaction
for reasoning about code history and design rationale.

– Significant editing events. Given our hypotheses around
what editing events may answer historically challenging
questions (Section 3.1), Meta-Manager specifically tracks
when and how certain editing events occur in the code’s
history. These edits include copy and paste events (includ-
ing copy-pasted code from online), block commenting in
and out code, and, given a specific code snippet, when
that snippet has been edited. Meta-Manager introduces its
own prioritization of code versions to reduce the search
space for users.

– Filter and zoom. Meta-Manager supports further reducing
the search space of code history through filtering the visu-
alization to only show edits of specific types and zooming
into parts of the visualization.

• Navigation. To answer a question using Meta-Manager, a
developer must find the information in the code’s history
that is relevant to their question. This information may come
in various forms, such as a code version, editing event, or web
page. Meta-Manager is designed to support intuitive mecha-
nisms for navigating through a potentially large search space
of code and code edits to find these information patches1.
– Annotated timeline. Edit events of interest, along with edits
involving searched-upon code, are marked as annotations
on the visualization’s timeline, so that a user can click
on the annotation and navigate to the code version that
contains, e.g., some code pasted from Stack Overflow.

– Scrubbing. Meta-Manager adopts the interaction technique
of moving quickly through time with brief previews of
the underlying content with a scrubber, to provide a quick
view about how some code changes over time – another
common “hard-to-answer” question.

– Search by content and by time. To support developers as
they refine their query and want to limit their search space
or when they find some code of interest in the current
editor, Meta-Manager supports searching across the code
history either by whether a version contains a search term

1“Information patch” is a term from Information Foraging Theory [68] used to describe
an information source that includes “smells” that either attract or deter users from
engaging with the source, given perceived relevance.

or by how a line/fragment/construct/etc. changes across
the version history.

We hypothesize that, through proper tooling that collects meta-
information related to the code author’s implementation session
while combating issues of scale and supporting various navigation
methods, later developers can answer their questions about code
history and design rationale when understanding an unfamiliar
code base.

In order to evaluate whether developers are able to answer oth-
erwise unanswerable questions about code with Meta-Manager, we
ran an exploratory user study with 7 people. In order to make the
task realistic (meaning there are many edits, with only a small sub-
set that are “useful”), we recreated a real code base [81] as though a
developer had been using Meta-Manager during the code base’s en-
tire development. We then added in many reasonable, yet simulated,
edits in order to create a much larger code history for participants
to navigate through. Participants used Meta-Manager to try to an-
swer provenance and design rationale questions about the code
history. We found that developers were able to successfully use
Meta-Manager to answer the questions about the history, and the
participants confirmed that the code and questions were realistic.

Our work contributes the following:

• Identifying and automating methods for capturing meta-
information that can help developers reason about code de-
sign rationale, history, relationships, and provenance.

• A system, Meta-Manager, that collects these forms of meta-
information with a design tailored to combat issues of scale
and supports navigation for developer question-answering.

• A user study that demonstrates the efficacy of Meta-Manager
for answering questions of code design rationale, history,
provenance, and relationships, along with qualitative in-
sights into what challenges remain for supporting this rea-
soning.

2 RELATEDWORK
Our work builds upon human-centered software engineering re-
search focused around how developers understand code, especially
with respect to code history, alongwith systems that have attempted
to assist in that sensemaking process.

2.1 Code Comprehension
Researchers in HCI and Software Engineering have extensively
studied the practice of understanding code [8, 9, 13, 17, 40, 43–
45, 55, 73, 75]. Understanding unfamiliar code is known to be cog-
nitively demanding, as developers are attempting to keep track of
many different types of information, including their current work-
ing task context [41, 46, 65, 77], and their growing and changing
knowledge of the code [47, 55, 77]. Among these studies, there has
been a focus on what are commonly called “hard-to-answer” ques-
tions about code [20, 42, 48, 55, 77]. Typically, these questions relate
to the history and design rationale of the code and can significantly
block developers from progressing on a task at any point in the
software development life cycle, whether that be in the context
of taking over a code base from a departed developer [61, 71, 72],
maintaining and collaborating on a project [42, 55], or joining a

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Amber Horvath, Andrew Macvean, and Brad A. Myers

new project [6, 33]. Considering this known challenge of under-
standing code, prior work has explored tooling solutions to assist
in this process, including generating within-IDE code descriptions
using natural language processing [60], directly supporting devel-
oper sensemaking activities such as code commenting and anno-
tating [24, 28, 30, 82, 84], using documentation [29], using print
statements [32], and supporting easier navigation of code [8, 10],
sometimes through sharing traces of navigation data from other de-
velopers within the code base [13]. Our work extends this research
through explicitly attempting to address some of these comprehen-
sion problems through a code-history exploration tool that extracts
significant events worthy of investigation, without requiring ex-
tra work at design time, unlike related tools [28, 30, 82, 84] which
require the developer to explicitly externalize their thoughts as
notes [28, 30, 66] or code comments [82, 84] in order for the tools
to provide value.

Of particular relevance to Meta-Manager are tools that utilize
developers’ natural information-seeking behaviors to assist in code
comprehension. Mylar (later called “Mylyn”) and its subsequent
iterations utilize developers’ navigation patterns and edit behaviors
to create a degree-of-knowledge model to recommend code entities
given a developer’s current task [21, 34] – Meta-Manager similarly
leverages developer actions for prioritizing types of information.
Further, in [21], code patches extracted by Mylyn were determined
by experts to not be relevant for newcomers – in contrast, our
system’s navigation mechanisms were used by newcomers to a
code base in order to reason about design rationale which suggests
some of our identified editing patterns across history may be useful
when used in conjunction with their system’s degree-of-knowledge
model in suggesting code patches. Codetrail [23] utilizes a shared
information channel between the text editor and web browser to
support and automate tasks such as using documentation. One
feature of Codetrail that is particularly relevant to Meta-Manager is
Codetrail’s identification of code copied from the web – when code
is copied from online, Codetrail automatically creates a “bookmark”
pointing to the web page in which the code snippet was copied
from. Notably, Codetrail does not version the code when this occurs,
version the website in case that code snippet no longer exists, or
identify within the source file where the pasted code ended up.
We hypothesize that Meta-Manager’s versioning of information
will make this feature more useful, as participants in the Codetrail
study did not find bookmarking of information sources particularly
useful and the authors posited that stronger connections between
visited web pages and the code warrants more investigation.

2.2 Code History
Some prior research tools, along with some commercial tools, are
designed to support exploration of code history. Code history visu-
alizations, specifically, have been extensively studied. While almost
all code history visualizations reserve the x-axis for representing
time, the y-axis and presentation of the code and edits varies. Some
tools adopt a stream visualization in which each “stream” repre-
sents a block of code [88]. The stream expands, retracts, and moves
up and down along the y-axis as lines of code are added, removed,
and the location of the code moves, respectively. Other visualiza-
tions reserve the y-axis and data points along the visualization for

edits that happened to some code at a particular time [90–92]. Our
visualization differs by combining these two approaches through
using the stream visualization approach to showcase blocks of code,
while annotating the timeline with particular edit events. These
visualization approaches have been used by other systems when
visualizing non-code documents’ editing histories, with prior sys-
tems using similar views to visualize Wikipedia page edit histories
[85] and Google Doc histories [87].

Some other code history visualizations do awaywith the timeline-
style presentation. Quickpose [70] uses a node-based graph struc-
ture in which each node is a version that may be annotated, moved
around, and executed, allowing for an interactive approach to ver-
sion management. Another approach for visualizing code history is
to present a visualization that mirrors the presentation of the source
code, yet adds meta-information about the history of the code. Both
Seesoft [16] and Augur [22] visualize each line of code with a color
representing how recently it has been edited, along with colors de-
noting who made the edit and what type of code structure the line
of code is a part of (e.g., method). This visualization is particularly
effective for answering “when, how, and by whom was this code
most recently changed” but does not serve to answer some of the
other questions related to code provenance and rationale that we
are interested in. Nonetheless, this more fine-grained information
is present in Meta-Manager as part of the code box for a particu-
lar version, while the part of the code structure is denoted using
the stream visualization. In this way, Meta-Manager attempts to
combine more forms of code history-related meta-information in
a single visualization and user interface, through supporting both
macro-level insights with the visualization and annotated timeline
and micro-level details with a code details view.

Other code history systems focus less on visualizing history and
more on utilizing the history to support development tasks. Deep In-
tellisense [27] and Hipikat [11] are code project “memory” systems
that serve code patch recommendations given a user’s currently-
assigned bug. Parnin introduces the concept of “code narratives”
and instantiates it with a suite of tools that capture code versions on
save and summarize the changes, with a separate tool for collecting
visited programming web pages [64]. Other systems have leveraged
discussion threads about code and mapped the threads to their
corresponding source code implementations as a way to preserve
history and design rationale [63, 86]. Code history information is
particularly important in the context of data science, where recreat-
ing analyses that lead to specific outcomes is necessary – this need
leads to specific tools for exploring code versions in computational
notebooks [26, 35, 36, 76]. Traditionally, most software engineering
teams utilize version control systems (VCS), such as GitHub [56],
for managing their code and the subsequent deployments of those
versions. These systems typically operate at the file level, which
makes finding fine-grained versions difficult, if not impossible, and
these systems do not extract additional meta-information, such
as where code originated from or what the original code author
was attempting to achieve. Further, these versions are typically ab-
stracted away from the original development context, which makes
finding a version nearly impossible to locate amongst many similar
versions on a website [80]. By losing the context of the original
editing workspace, it becomes more difficult for the developer to
formulate a useful query to locate their code events of interest [74].

Meta-Manager: A Tool for Collecting and Exploring Meta Information about Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Meta-Manager improves upon this model through capturing more
contextual information about the editing workspace, versioning
this meta-information, and supporting fine-grained explorations of
code history through search.

Our system builds upon prior code-versioning works through
introducing a lightweight mechanism that collects and saves sig-
nificantly more information without requiring overhead from the
code author, and allows for querying within the code editor at a
fine-grained level to find particularly interesting events, which cuts
down on the required work a later developer must do when un-
derstanding code history. Notably, nearly all of the prior tools and
visualizations do not explore to what extent the history data and/or
visualization can actually help developers learn something about the
code, and few tools provide features for interacting with the history.
Meta-Manager demonstrates that developers can learn about the
code through providing mechanisms that support foraging through
code history.

3 OVERVIEW OF META-MANAGER
In order to capture code provenance and rationale information
at scale in an investigable manner, we developed Meta-Manager.
We begin our discussion by delineating what questions we believe
Meta-Manager is able to answer, then show how a new developer to
a software team may use Meta-Manager to answer these questions.
We then discuss how each feature in Meta-Manager instantiates our
design goals and addresses these significant questions developers
have about code.

3.1 Developer Information Needs
In designing and creating Meta-Manager, we began by reviewing
related literature on information needs of developers when work-
ing with unfamiliar code [11, 15, 20, 33, 42, 47, 55, 61, 71, 72, 77].
Working with unfamiliar code happens in many different contexts,
including maintaining a code base that has been edited by many
engineers across time [20, 42, 47, 55, 77], joining a new project
[11, 33], adopting a code base from a departed coworker [61, 71, 72],
or using a new software library [15]. In reviewing the literature,
we were particularly interested in questions about the rationale
behind code’s design, given that questions of design rationale were
the most common question in a study of professional software
engineers [47] and there are minimal tooling options to support
answering these questions, despite their ubiquity [55]. Through our
literature review, we identified the following questions as related
to code rationale and provenance, and as potentially answerable
through supporting developer’s sensemaking of code history:

• History: How has this code changed over time? [15, 47,
55, 77] Developers often try and understand the evolution
of some code in service of answering a question that is perti-
nent to their current task. For example, this may help while
investigating when a bug was introduced [79], finding when
some code was last used in service of understanding how
a feature changed over time [89], getting “up-to-speed” on
a new code base [33], or finding a snippet of code that was
edited repeatedly to understand where the original devel-
oper had issues [47, 50, 79]. Isolating when these particular

changes happened can be impossible in the case that the in-
termittent version is not logged in a version control system
(which is often the case in situations where a developer is
trying out multiple solutions), or very difficult to find even
if there [35].

• Rationale: Why was this code written this way? [33,
42, 47, 55, 72, 77] A commonly-reported activity among de-
velopers when understanding unfamiliar code is reasoning
about why it is written the way that it is. This informa-
tion is typically only known by the original author during
the time at which the code was written and, if not written
down (which is the majority of cases given developers reti-
cence to pause and write [55] or because they believe it to be
unimportant[53]), is lost. On the off chance it is recorded, it
is most likely preserved in the form of a random Git commit
message or code review comment[67], which are often too
difficult to forage through [80]. Developers have stated that
attempting to answer these questions are “exhausting” given
the lack of tooling support and reticence to ask co-workers
[55], yet they must be answered in order to understand de-
sign constraints and requirements which will inform later
implementation decisions.

• Relationships: What code is related to this code? [11,
20, 47, 77] Oftentimes, when contributing a change to a code
base, developers must reason about how their new code
is related to many other parts of the code beyond simply
what could be found in a call graph. Other relationships
that developers reason about are what parts of the code are
commonly edited together (often called the “working set”
[8, 10]), and, if introducing a change or refactoring some code,
what other parts of the code must be updated. Developers
also sometimes wonder what solutions a previous developer
already tried when introducing a change, another otherwise
untraceable relationship given that such prior solutions are
usually commented-out or deleted [47].

• Provenance: Where did this code come from? [20, 77]
In 2021, Stack Overflow reported that one out of every four
users who visit a Stack Overflow question copy some code
within five minutes of hitting the page, which totals over 40
million copies across over 7 million posts in the span of only
two weeks [69]. Given this ubiquity of online code and de-
velopers reliance upon it, researchers have investigated the
trustworthiness of code that is sourced from online resources
[4], ability to be adapted to a developer’s own working con-
text [93], and correctness of the code in terms of API usage,
syntax, and so on [83].With the rise in large languagemodels
(LLMs) for code generation, research is beginning to focus
on the quality of AI-generated code as well [37, 51, 52]. Typi-
cally, it is not easy to see what code came from AI or from an
online source, versus what was written by developers them-
selves. While developers occasionally add code comments
that cite where some pasted code came from, this does not
happen very often [3] and, when it does happen, the links
have a tendency to break over time and recreating the con-
text in which that code was initially added and determining
whether it is still valid is laborious [25].

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Amber Horvath, Andrew Macvean, and Brad A. Myers

3.2 Scenario
Ringo, a software engineer, is working on implementing a calendar
widget into his team’s scheduling software. Ringo is using an off-the-
shelf React component that provides most of the calendar widget’s
functionality and visuals – yet, as he is implementing some of the
date verification, he notices that the returned time is incorrect. He
begins by searching Google for how the date verification API works,
visits the documentation but does not find any useful code examples,
then asks ChatGPT what is wrong with his usage of the API and how
to get the API to verify the date correctly. ChatGPT provides him
with a code example, which Ringo copy-pastes into the code base.
Upon re-running the code, he sees the snippet works and thinks
nothing more of it. He, then, pastes this code into the other parts of
the project requiring date verification.

Many months later, Jeremiah, a software engineer who has re-
cently joined this project team, is working on one of his first pull
requests. In doing so, he spends time familiarizing himself with the
code base by reading through the code. While reading, Jeremiah
notices an odd implementation choice – a particular function uses
an earlier version of an API’s method for checking the time of a
calendar widget, despite the current version of the calendar API
being used elsewhere. Jeremiah is not initially certain whether this
confusing implementation decision is intentional or not, as there is
no documentation on this line of code, and, given this uncertainty,
he is reticent to change the code out of fear of some undocumented
design criteria. Jeremiahwonders “why is this code written this way?”
and launches Meta-Manager to investigate.

Jeremiah notices in the Meta-Manager pane that this particu-
lar file has many hundreds of edits and, through the visualization,
notices that the particular block with the confusing code was in-
troduced many edits ago. This suggests that Jeremiah’s current
teammates would most likely not know why this particular API
method is used. Thus, Jeremiah begins using the Meta-Manager
by selecting the line of code in question and searches backwards in
time to see when this line of code was introduced. When the Meta-
Manager timeline updates with places in which the line was edited,
Jeremiah notices that the line was added with minimal subsequent
edits and its first appearance corresponds to a paste from ChatGPT.
This tells Jeremiah that the code has not evolved much over time sug-
gesting that it was a solution that did not require much tweaking
by the author. Jeremiah inspects the code version by clicking on the
“ChatGPT” paste event. The ChatGPT code version has additional
meta-information including the original developer’s Google search
and visited web pages which shows that they were looking at the
API documentation. The thread shows that they asked ChatGPT for
a code example that uses the API to verify a date and ChatGPT pro-
vided the code using the earlier API method. With this additional
context provided by Meta-Manager’s meta-information, Jeremiah
now knows where this odd code came from, as the older API usage
was provided by ChatGPT, and why the code was written the way it
is – namely, to meet a specification that the newer version of the
API does not provide. With this information, Jeremiah no longer
needs to ask his teammates about the usage of the old API and feels
comfortable leaving it as is – he adds a code comment to the line
stating that this line should be updated if the calendar API updates
with new date-checking functions.

Jeremiah, lastly, wants to see if there are any other parts of the
code using the older version of the API, such that he can similarly
mark those parts of the code for updating. In order to find any
code related to his current code, he looks to see whether this code
has been copied and pasted anywhere, and finds that the code was
copied and pasted 4 times across history. When looking at those
copy events, he navigates to the corresponding pastes and sees that
2 of the 4 pastes no longer exist. For the remaining pastes, he adds
a code comment stating the lines should be updated.

3.3 Detailed Meta-Manager Design
We now discuss features (labelled with “F” below) of Meta-Manager
in terms of its design goals (“D”), and how these features support
answering the history and rationale questions about code we have
identified in our prior literature review (Section 3.1).

3.3.1 [D1] Automatic Code History and Provenance Data.
We developed Meta-Manager to support better navigation and
sensemaking of code history through a scalable and visualized
history view (see Figure 1). Meta-Manager supports automated
history and provenance data through its organization of data and
its history model ([F1]), along with extending its historical data
capturing outside of the IDE ([F2]).

[F1] Data Organization. On system launch, Meta-Manager
creates an index of the entire code project by traversing through
each file and creating an abstract syntax tree (AST) representation
of each TypeScript or JavaScript file and, if Meta-Manager has been
used with the code project previously, searching the Meta-Manager
database to find what code blocks in the current project correspond
to the code blocks saved in the database history. In the case that
the block does not exist in the database, Meta-Manager will begin
tracking its history.

We chose to track code history at the block-level, as opposed to
the file level, in order to better align with developers’ mental models
of code [27] and given that our supported questions are often asked
at the block or snippet level. This approach also complements our
design goals of combating scale, considering each code block is in
charge of its own history, meaning code versions are only captured
when a block has changed. By deconstructing the versioning space
to each code block and allowing each code block to manage its own
history, we can support more fine-grained answering of questions
related to history and provenance.

In order for Meta-Manager to begin logging code versions, the
user does not need to take any actions beyond installing the exten-
sions. On each file save, Meta-Manager will log a new version and
perform an audit of the file to see if there are any new blocks of
code to track. To investigate the code history, the developer can
navigate to the “Meta Manager” tab in the bottom area of the editor
— doing so will render the edit history of the user’s currently-open
file. Whenever the user opens a file, the Meta-Manager will render
that particular file’s history. Each code block’s history appears both
within the visualization as a colored stream (Figure 1-5) and, given
the location of the scrubber (Figure 1-1) along the timeline, a code
box version (Figure 1-8) is shown that represents that particular
code block at that point in time.

[F2] Development Traces Online and in-IDE. Meta-Manager
tracks code-related development events within the IDE and online.

Meta-Manager: A Tool for Collecting and Exploring Meta Information about Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 2: How the code box looks when expanded to show a code version – in this case, a “Paste” event version. (1) shows the
buttons specific to a “Paste” code version, including the“See Copy” button which will navigate the user to the corresponding
copy event on the timeline (if the copy happened in a different file, then the code box will update with a preview of how the
code in the other file looked at the time of the copy, which can be clicked on to change to that file); (2) shows the text explaining
what happened with this particular paste event — clicking in this area will open the editor tab showing what the code file looks
like now; (3) shows the code for this version, along with a light blue highlight on the code that was pasted.

For certain events, additional meta-information will be shown on
those particular code versions with additional affordances. For ex-
ample, in Figure 2, this particular version of the method getConfig
had a paste event, where the user pasted in the code on line 6.
The version adds additional information such as where that copy
came from (in this case, the file “src-extension.ts”) and buttons for
relevant actions, such as seeing the original copied code (Figure
2-1).

In cases where code was pasted from an online source, Meta-
Manager will provide additional meta-information about the web
page that the code was pasted from, and, if available, what the
original user was attempting to do. Meta-Manager’s supplementary
browser extension is designed to work with some popular program-
ming learning resources, including Stack Overflow, GitHub, and
ChatGPT2. If the browser extension detects that the user is on one
of these web pages, it will extract website-specific information (e.g.,
the name of a ChatGPT thread) and listen for copy events. If the
Visual Studio Code extension detects a paste which matches the
content of the browser extension’s copy, this additional information
will be transmitted to the Visual Studio Code extension to be asso-
ciated with that paste. The hypothesis is that the query text can be
a good signal of the developer’s original intent for the code, which
has been supported by prior work [38, 54] and our observations.

2We envision this list being substantially expanded to include other commonly-used
resources where code is copied from, such as the official documentation for languages
and APIs.

Similarly, if the usermakes a programming-relatedGoogle search3
prior to visiting these websites, their initial query and visited web
pages will be included with the meta-information about the pasted
code (Figure 1-10). Clicking the “See More” button will pull up a
preview of the web page in the Meta-Manager pane of the editor,
and highlight the part of the code on the web page from where it
was copied.

Through automatically capturing this development context that
would be too laborious to capture manually, we hypothesize that
these pieces of information, when combined and contextualized
to when the edit happened, can help developers reason about the
rationale behind a change and the relevant provenance. These fea-
tures work in conjunction with our data model, which allows each
block to track this information. A problem with other methods for
keeping track of provenance information, such as code comments
that contain links to where some code came from, is that the in-
formation can go out-of-date, either in the case the link breaks or
the code changes enough such that the code comment is no longer
accurate [25]. By having this information versioned, we give the
developer the tools to reason about this rationale across time.

3.3.2 [D2] Scalability. Given the sheer amount of information
we are tracking with Meta-Manager, Meta-Manager is designed
3We consider a programming-related Google search to be one in which popular
programming-related websites appear in the search result list. We acknowledge the
potential privacy problems with this feature, and consider the current prototype to
mainly be an evaluation of the advantages of doing this, and expect that a more
complete tool can provide more control over what is saved from the browser, as in
[54].

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Amber Horvath, Andrew Macvean, and Brad A. Myers

to support managing large amounts of information. We do this in
multiple ways – both collapsing information into a visual represen-
tation ([F3], [F5]) and prioritizing different types of information
([F4]).

[F3] Visualization. The chosen visualization, linked to our
data model ([F1]), allows each block to manage and display its
history effectively. The x-axis represents edits, while the y-axis
corresponds to file line count, collapsing all edits to illustrate block
changes over time. For example, in Figure 1, the dark blue stream
represents the activate function. In the case of nested blocks (e.g.,
a method within a class), the colors in the visualization will overlap,
such as the violet area on the chart covering the dark blue. At the
scrubber’s version, the activate function grows by approximately
20 lines, reflecting a paste event from “ChatGPT”, suggesting to
a user that ChatGPT provided a significant contribution at this
time. In this way, the visualization itself can serve to answer some
questions about the code’s history on its own. The visualization
also contextualizes the annotated timeline of events (see Section
3.3.3-[F7]).

[F4] Significant Edit Events. Meta-Manager manages scale by
prioritizing certain versions over others. Each code block listens
for specific edit events that occur during its history, such that these
events may be annotated along the timeline (Section 3.3.3-[F7]). Edit
events of interest include copy-paste events, both from online and
from within the IDE, block commenting code, and, given a specific
code snippet, when that snippet was edited, added or deleted. When
these particular edit types happen, additional meta-information
will be captured and shown on the code version, as is the case for
the version in Figure 1-10 which shows where the code came from,
what the user was doing online, who performed the edit, and when
it occurred. This meta-information will change given the type of
edit (see Figure 2 for an example of an in-IDE paste event).

We hypothesize that these edit events will be useful to later devel-
opers due to the diverse meta-information they generate, aligning
with our earlier discussions on developer information needs. As
discussed in Section 3.3.1-[F2], web activities of developers can elu-
cidate code design rationalewhen viewed alongside code versioning.
Within the IDE, copy-pasting aids in understanding hidden code
relationships between the original and pasted sections, assisting in
tracking code provenance. Block commenting reflects developers
exploring different solutions or altering implementation, a code
relationship typically challenging to trace.

[F5] Zoom and Filter. Another feature Meta-Manager provides
to manage scale is through directly interacting with the visual-
ization to reduce the history-space through zooming. Since the
number of code versions will increase over time, Meta-Manager
allows developers to zoom in to parts of the visualization that they
find particularly interesting. The visualization will update to show
a slice of the editing history (Figure 3), which can be dismissed with
a “Reset” button. Users can also filter the timeline representation to
only show specific edit events in order to further reduce the search
space.

3.3.3 [D3] Support Navigation. In order for the code history to
actually be useful for question-answering, developers must be able
to find the relevant information pieces in service of their questions.

Meta-Manager presents this information as code versions that con-
tain meta-information and supports finding these versions through
multiple ways.

[F6] Search. Meta-Manager supports searching by both content
and by code versions across time. Users can search across time
using either code that they have selected in their current code
version (Figure 2-1, “Search for Selected Code”) or directly through
the code editor by selecting some code in their file, then using the
context menu to select “Meta Manager: Search for Code Across
Time”. These two searches differ slightly from one another, in that
the search using the code box will search forwards in time from
the specific code version, while the search from the code editor
will search backwards in time (since the editor always shows the
current version of the code). Both searches utilize the edit history
by modifying the query given how the code changes across each
version. This means that the search will attempt to expand if the
selection grows, shrink if the selection shrinks, and update the
code query content to match on given variable names and other
constructs changing over time.

When a search is performed, the timeline will update with events
marked “Search Result” for events affecting the specified code,
where the code differs in some way from the previous version. This
is to prevent the search results from being flooded with events
where the code is exactly the same, but has moved as a result of
other code above it being edited. When looking at a search result
code version, the part of the code that matched the user’s query
will be highlighted in orange. The search will also detect significant
edits made to the code. This includes when the searched-upon code
is initially added, removed, commented out, or commented back
in. These events are specifically marked on the timeline with a
label corresponding to the type of edit. Searching by content works
similarly in that the user can type a query into the search box (Figure
2-6) and each code version which includes the searched-upon string
will be annotated on the timeline. Searching is fundamental for
finding a version thatmay answer questions of rationale, provenance,
or history.

[F7] Annotated Timeline.Meta-Manager leverages the listened-
for significant editing events of interest (Section 3.3.2-[F4]) by an-
notating these events along the visualization’s timeline (see Figure
1-4). Clicking on these annotations will navigate the user to that
particular code version, further reducing the amount of code ver-
sions a user needs to look at in order to find potentially useful
information, given our hypothesized information needs that will
be met with the meta-information captured during these editing
events. The timeline will also be annotated with versions to look at
when a user performs a search (Section 3.3.3-[F6]). A large barrier to
making sense of code history is the challenge of searching through
large histories [80]. Meta-Manager attempts to mitigate this barrier
through pulling out the most interesting versions using both its
data and history model and through leveraging the user’s interest
given a search query.

[F8] Scrubbing.Within Meta-Manager, users can scrub through
code versions (Figure 1-1). The scrubbing functionality serves mul-
tiple purposes: enabling movement between un-annotated versions
along the timeline and providing a quick overview of code changes
over time. When the code box is expanded and the user is scrubbing,
the code will update for each version. This view complements the

Meta-Manager: A Tool for Collecting and Exploring Meta Information about Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

visualization’s high-level representation of history with its lower-
level code history representation and supports varied speeds of
historical sensemaking, akin to how a user can scrub through, e.g.,
a YouTube video and speed up or slow down for targeted viewing.
Users can comprehend the code history at different levels, aligning
with where they are in their sensemaking journey.

We hypothesize that supporting search both by content and
across time will help with further bridging the connection between
the user’s current working context and the history of the code. By
supporting this more micro-level investigation, in conjunction with
the more macro-level scrubbing and visualization mechanisms for
understanding history, users of Meta-Manager can answer their
questions at varying levels of granularity.

3.4 Implementation
The Meta-Manager, both the Visual Studio Code editor extension
and supplementary browser extension, utilize TypeScript for the
logic and React [18] (with D3.js [62] for the chart in the Visual
Studio Code extension) for the front end. FireStore [14] is used
for authenticating the user, establishing a shared connection be-
tween the browser extension and Visual Studio Code extension,
and logging the code revisions and metadata in the Meta-Manager
database.

The code logging in the editor relies on the TypeScript AST to
match parsed blocks to stored code entities in the database. Match-
ing utilizes text-matching via a “bag of words” approach (explained
in [88]), prioritizing known block relationships, Git commits, and
line differences. Each node manages its version history through a
“change buffer” that monitors changes to detect our edits of interest.
Despite copy events not altering the code, the system identifies
which node experienced the copy, establishing a connection with
the pasted node.

4 LAB STUDY
In order to assess how well Meta-Manager performs in helping
developers answer historically “hard-to-answer” questions about
code history, we ran a small user study. Participants were tasked
with using Meta-Manager to explore an unfamiliar code base while
using the system to answer questions we asked them about the
history of the code, without modifying or running the code. We
chose to have a single condition (as opposed to a between or within
subjects study design) in which participants used the tool since the
questions we asked participants would, without the tool, be unan-
swerable, meaning there is no real control condition we could grade
the experimental condition against. This was done deliberately con-
sidering we specifically designed our tool to support answering
these types of questions. Thus, ensuring that the tool succeeded in
that regard was our primary goal of the study, along with assessing
the usability and utility of the tool.

The lab study consisted of a tutorial withMeta-Manager in which
the experimenter and participant walked through each feature.
Then, the participant and experimenter walked through different
parts of the code base and the participant would use Meta-Manager
to try and answer each of 8 questions (Table 1). Once the participant
answered each question, the study ended with a survey to capture
participant demographic information, along with their experience

using Meta-Manager, and their own history in attempting to an-
swer the types of questions Meta-Manager is designed to help with
answering.

4.1 Method
4.1.1 Code History Creation. Given that Meta-Manager has not
existed long enough to naturally accrue a history log that would
be in line with real, prolonged use of the tool, a code history was
artificially created prior to running the study. We did this because
we did not want to bias the study in favor of the tool purely because
there are a small amount of code versions, thus finding an answer
to a question would be trivial. The artificial code base is based upon
a real code base [81] for a Visual Studio Code extension created by
an external group unaffiliated with Meta-Manager, which functions
similarly to CoPilot. This repository was chosen due to the fact that
much of the code centers around the Visual Studio Code API, which
few developers are familiar with, thus lowering the likelihood of a
participant performing well purely due to having more background
knowledge in the domain.

Our methodology draws from prior approaches that similarly
explored developer sensemaking of code history by using a variety
of online sources along with the the experimenter’s rewriting of
the code to create the synthetic code base [36]. Code sourced from
different online sources ensures that the code base is unbiased since
it does not just use code sourced from one individual who has one
implementation style. To create the artificial edits, the first author
independently rewrote the code base, following along with the Git
commit history in order to capture “real” versions of the code.While
writing the code that existed in each commit, the tool was logging
these real versions, but was also recording individual edits (e.g., add
1 line that says const searchResults = match(searchResults);
in file search.ts on commit 4acb) that were then artificially inserted
at realistic intervals across each code’s history, given the correct
file, time period, and code block. The first author intentionally did
not write “perfect” code that matched what was in each commit,
to account for the intermittent versions the tool would capture
in real usage. The author also intentionally added events that we
are particularly interested in investigating, such as copy-pastes,
across each file’s history, along with simulated copy-paste events
that match the frequency reported in prior literature on how often
developers copy-paste during a normal programming session [31].
We also added realistic copy-pastes from Stack Overflow and a few
fromChatGPT since thesewill be increasingly important, with these
events occurring less frequently than within-editor copy-pastes.
To further validate the realism of the code, we followed the same
approach as [30] and asked participants how similar the code was to
code they had seen in their own work, with participants reporting
the code is, on average, similar to code they have encountered
before4. We generated a code base consisting of 5,661 edits in 1,328
lines of code across 10 files and 28 different code blocks.

4.1.2 Tutorial. The study session began with the experimenter
showing the participant how to use each feature in Meta-Manager.
This included an explanation of the visualization (including how
to zoom in to the visualization), how to use the scrubber to move
4average = 3.8 out of 5, using a 1-to-5 point Likert scale from very dissimilar to very
similar

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Amber Horvath, Andrew Macvean, and Brad A. Myers

Figure 3: A zoomed-in portion of the timeline shown in Figure 1. This zoomed-in portion shows around 120 edits between
Version 710 and Version 830, with the scrubber set around Version 740, when a user pasted code from Stack Overflow.

through the code versions, how to search from both within the code
editor and within a code box, how to filter to view only copy events,
paste events, or paste events from online, and how to view each
corresponding copy and paste between code versions. This tutorial
was done in one of the files within the created code base, such that
the participant could understand the context of the code base, but
none of the code history task questions related to anything in that
particular file.

4.1.3 Task. Our main task draws from similar related work [13,
36] in that each participant was required to use Meta-Manager
to answer 8 questions (see Table 1). Each question was designed
such that it would represent at least one information need we are
interested in (see Section 3.1) given prior literature, and would
require the participant to use some feature of Meta-Manager to
answer. Questions also required the participant to perform multiple
steps using the tool, such that they would be non-trivial to answer
and would represent the more realistic case of using a tool like Meta-
Manager, where the full “answer” is multi-faceted and comprised
of multiple information pieces. For example, question Q1 asks both
what string a regex is matching on and why – “what” refers to the
implementation of the regex and is requisite knowledge in order to
make a change to the code, while “why” represents the rationale
behind the current design and is information that can be used to
reason about how a new version should be designed in order to
adhere to the original design constraints, goals, and specifications.
Table 1 lists each question, along with the steps a participant could
do in Meta-Manager to answer the question. The complete set of
study materials, and a video showing how to answer the questions,

is included in the supplemental material5. The solution in the table
represents the most efficient way to answer a question, but each
question can be answered using other methods. Participants had 10
minutes per question and were not allowed to edit or run the code,
or search for information online. When a participant felt they had
come to an answer, they were instructed to state their answer and
they would move on to the next question.

Questions 1 and 2 were in a file with 90 versions, questions 3
and 4 were in a file with 619 versions, question 5 was in a file with
727 versions, and questions 6 through 8 were in a file with 1,302
versions.

4.1.4 Analysis. For each participant, we recorded whether or not
they got the correct answer for each question and how long it
took them to come to the answer. “Correctness” was determined
objectively by whether or not they found the correct code or code
version that contained the answer and whether the participant’s
summation of what they learned was accurate. If a participant got
only part of a question right, such as understanding in Q1 what the
regex is matching on but not understanding why, the question was
still marked as incorrect. If the participant did not finish within
10 minutes, the question was marked as incorrect. We additionally
reviewed the video recordings to see what features of the tool and
strategies participants used when coming to an answer.

4.2 Participants
We recruited 7 participants (6 men, 1 woman) using study recruit-
ment channels at our institution, along with advertisements on
5The complete source code for Meta-Manager can be found at
https://github.com/horvathaa/meta-manager.

Meta-Manager: A Tool for Collecting and Exploring Meta Information about Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Question in Task Info. Need (Sec.
3.1)

Solution Outcome Avg. Time Spent
If Correct

Q1. In config.ts, there is a regex
for search pattern matching.
Can you tell me what it is
matching on and why?

Rationale Find paste from ChatGPT, read
user’s ChatGPT query

6 correct, 1
incorrect

3:28 (min: 0:58,
max: 6:32, std. dev.:
1:59)

Q2. There is a bug in the
commented out Promise code.
Can you find where the bug was
and what happened?

History Find where Promise was
initially commented out, where
Promise came from, and look at
versions before that event

4 correct, 3
out-of-time

5:04 (min: 1:58,
max: 7:02, std. dev.:
2:24)

Q3. Prior to using parseHTML,
the author was using a different
API - what was it and why did
they stop using it?

Rationale Search to when parseHTML no
longer exists, see what code was
there before, and see Stack
Overflow post

7 correct 4:35 (min: 2:23,
max: 7:38, std. dev.:
1:46)

Q4. Recently, some code was
added to search that came
from a different file – can you
find that code and explain what
changed?

Provenance Filter to see pasted code, find
paste event with code copied
from a different file, then search
for that code in the file

7 correct 4:47 (min: 2:00,
max: 8:08, std. dev.:
2:29)

Q5. Look at lines 68 to 70 –
there is a commented out
forEach loop. Can you find the
last time it was used and
explain why it was removed
and what it was replaced with?

Relationships Search on commented out code,
click on “Commented Out”
event, find Stack Overflow post
near event with replacement
code

7 correct 4:24 (min: 1:57,
max: 7:12, std. dev.:
1:44)

Q6. What code was generated
by an AI system and what
ended up happening to it?

History Filter to see ChatGPT code, then
search forwards in time on that
code

5 correct, 2
out-of-time

6:36 (min: 2:02,
max: 9:15, std. dev.:
1:53)

Q7. What were all the different
things that the programmer
tried when setting the match
variable?

History Search backwards in time on
match, look at events

5 correct, 2
incorrect

5:18 (min: 2:15,
max: 8:17, std. dev.:
2:15)

Q8. Some code from activate
was moved into a different file.
When did this happen and what
was the code that was moved?

Provenance Filter to code copied in
activate, then see
corresponding paste locations

7 correct 3:42 (min: 1:14,
max: 8:35, std. dev.:
2:17)

Table 1: Each question that was asked during the task, along with what information need from prior literature it corresponds
to, the steps that could be taken in Meta-Manager to answer the question, and how participants performed on the question in
terms of correctness and time spent (in minutes). Note that some questions represent more than one information need, such as
Q5, which both asks what code is related to the commented out loop, but also why the loop was commented out, which is a
rationale question.

our social networks. All of the participants were required to have
some amount of experience using TypeScript and be familliar with
Visual Studio Code. Participant occupations included 4 professional
software engineers, 2 researchers, and a financial operations engi-
neer with a computer science background. The average amount of
years of professional software engineering was 3.16, self-reported
competency with JavaScript was 4.5 (out of 7, where 7 is expert),
and self-reported competency with TypeScript was 3. All study
sessions were completed and recorded using Zoom and participants

used Zoom to take control of the experimenter’s computer in order
to use the tool. Participants were compensated $25 for completing
the study and the study was approved by our institution’s Institu-
tional Review Board. Participants 1 through 7 are referred to as P1
through P7.

4.3 Quantitative Results
Participants, on average, were able to correctly answer their ques-
tions 85.7% of the time (48 out of 56), and averaged 4 minutes and

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Amber Horvath, Andrew Macvean, and Brad A. Myers

52 seconds per question. No participant got every answer correct,
and all participants got at least 6 answers correct. Of the 8 failed
questions, 5 occurred because the participant ran out of time, and 3
occurred because the participant came to the wrong answer.

Table 1 shows question outcome and how long, on average, get-
ting the correct answer to the question took. Questions 3, 4, 5,
and 8 were answered correctly by all participants and did not take
relatively long to solve. Participants also solved these questions
in the most consistent manner, with all participants starting with
the same first step that was outlined in Table 1 as the intended
solution path. Notably, these questions correspond to 3 of the 4
types of information needs discussed in Section 3.1, suggesting
that the tool was successful in supporting rationale, provenance,
and relationship needs. Participant’s success with answering prove-
nance questions supports our hypothesis that copy-paste data can
help with reasoning about where and how some code came to be.
Additionally, in our post-task survey, participants rated Q5 as the
most similar to frequently asked questions they have, suggesting
that our tool’s ability to support finding relationship and rationale
information is particularly valuable.

In the post-task survey, participants reacted favorably to Meta-
Manager. Participants agreed that they would find Meta-Manager
useful for their daily work (avg. 6.14 out of 7, with 7 being “strongly
agree”) and enjoyed the features provided by Meta-Manager (avg.
6.57 out of 7). Participants particularly liked the ability to see where
code from online came from within the context of the IDE as a way
to see what the original developer was doing, with one participant
stating that they imagined that this will be how they spend “most
of their development time in the future, with more code coming
from AI” (P7). This, along with participants overall success on
Q1, supports our hypothesis that reasoning about rationale can be
supported using information traces from AI code-generation tools
and related web activity.

We additionally asked participants to rate each question asked
in the study by how often they have encountered similar questions
in their own programming experiences on a 5-point scale from
“never ask” to “always ask” (Figure 4). Q5 (which asked about why
some code was introduced to replace some other code) was the
questions to which the most participants reported asking similar
questions, with 4 participants stating they “always ask” questions
like this. Notably, that is also one of the questions all participants
were successfully able to answer, which suggests the tool is use-
ful in supporting this information need. Only two questions had
some participants state they never asked that question, which were
the questions corresponding to reasoning about where some code
originated from (an AI system, in this case), and what the previous
developer had tried when implementing some change. All ques-
tions had at least one participant say that they sometimes ask that
question, which is both consistent with prior research and adds
more evidence that supporting answering these questions is useful.

4.4 Qualitative Results
We now explore participants’ qualitative experiences using Meta-
Manager in terms of how they used its features to answer each
question with respect to Meta-Manager’s design goals.

4.4.1 [D1] Automatic Code History and Provenance Data. Partic-
ipants, overall, enjoyed having access to the code-related history
and provenance data, especially in the case of code sourced from on-
line. 6 out of 7 participants explicitly stated in the post-task survey
that they valued Meta-Manager’s ability to capture what code was
sourced from online sources, especially ChatGPT, and that these
events were explicitly called out on the timeline and filterable. This
preference also manifested in their question-answering strategies
with participants commonly defaulting to clicking on any event an-
notation that came from online, especially if they were stumped on
what to do to answer a question. P4 clearly articulated this strategy
by saying, after using ChatGPT to solve Q1 and why a regex was
written this way, “I’m looking at ChatGPT because that worked
well last time.” Other participants did not immediately understand
that the web-based pastes contained additional meta-information
that could help with reasoning about “why” some code is the way
it is – P3, in attempting to answer Q3, did not look at the Stack
Overflow code version which has a Google query explaining why
the user switched API methods, and, instead, brute-force searched
through the surrounding code versions and correctly reasoned that
the API methods were swapped due to an asynchronous issue given
some type changes made between versions. While this strategy
was successful in this case, their usage suggests that some users
may not see the connection between web-activity and rationale
for changes, suggesting that further highlighting the most perti-
nent “information cues” from these versions (e.g., Stack Overflow
question titles) in the user interface, either through the timeline
annotation text or within the version itself, may better serve to
highlight the significance of the web activity.

4.4.2 [D2] Make Information Scalable. In terms of managing the
sheer scale of the version space participants were operating in, the
combination of the visualization, zooming, and filtering worked
together well to isolate “sub-histories” of the history to explore.
A common strategy in answering history and provenance-based
questions, used by 4 participants 12 times, was to use the annotated
timeline labels as a boundary for a search space, then “zoom” into
this space to look at the intermediate versions. For example, P3, in
order to answer Q2, used the visualization to identify that there
was a large growth in the code base at the end of the history and
there was pasted code added at that time – he then zoomed into the
end part of the history at the first instance of pasted code when the
lines of code grew in order to reason about how the code changed
after the addition of it and prior to it being commented out. In
this way, participants were able to leverage the significant editing
events, not only for meta-information, but also for their ability to
segment the information space. This behavior of orienteering [2]
to gain an understanding of part of the information landscape is
consistent with behaviors exhibited in other information foraging
studies [80], suggesting Meta-Manager’s feature set supports these
processes when navigating a large information-space.

4.4.3 [D3] Support Navigation. In our design of Meta-Manager, we
were particularly concerned with making the code history space
navigable, given this significant challenge in prior work [36]. To
this end, we adapted different techniques for moving through the
history including annotated timeline labels, scrubbing, and search.
However, one interesting aspect of navigation that we did not

Meta-Manager: A Tool for Collecting and Exploring Meta Information about Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 4: Each question scored by participants in terms of how often they encounter similar questions in their own programming
experiences.

explore as much, nor has been explored in related literature to the
best of our knowledge, is how navigation worked with respect
to moving between the “live” version of the code within the IDE
and the historical versions housed with Meta-Manager. Through
supporting this relationship, we found multiple design challenges
and opportunities.

Navigating Through Time. All participants began each ques-
tion that had an optimal first step of searching by “searching” – the
ubiquity of search made it a common strategy. However, one chal-
lenge participants faced when searching through history was going
too far back in the history and missing the connection of what they
were seeing in the prior version versus what was in the IDE. This
happened with 2 participants across 3 questions – the participants
would search on the current version of the code and then began
clicking through the search results starting from the earliest ver-
sion. Since our algorithm works across time, it begins at the current
code and works backwards by adapting its query given identified
changes between versions – since participants could not readily
see how the query evolved, jumping to the beginning of the search
results in the history (which is the last match the algorithm found)
was sometimes confusing. Evolving the search query is necessary
in order to ensure trivial changes are not disregarded as search
results (e.g., switching const match = ’foo’ to const match =
’Foo’ where the “f” is now capitalized), but Meta-Manager may
be improved by supporting more sophisticated ways of summa-
rizing the search over time or refining which matches should be
included. This optimization would also help with another issue
participants encountered, where the search would perform differ-
ently depending upon what code was selected in the IDE – given
a question such as Q5 where participants would begin by search-
ing on a commented-out forEach loop, some participants would
select the whole loop while others would just select the first line,
which would result in the search performing differently given these
different yet semantically-similar initial strings.

Navigating Between and Across Files, Spatially and Tem-
porally. Questions that required participants to reason not only
about the history of their current file, but how that history relates to
the history of other files caused confusion. Q2 required participants
to reason about how some code in the current file changed, given
its relationship to its original copy source in another file. Under-
standing the original code’s intent was necessary in order to better
reason about why the code from the question was commented out –
participants, with the “See Corresponding Copy” button, can see a
preview of what the copied code looked like at the time of the paste.
2 successful participants and all unsuccessful participants struggled
to reason about the connection between the “Corresponding Copy”
version (which is on a different version within in a different file),
the version of the code that received the paste, and how both of
these information pieces related to the code in their current IDE. Fu-
ture systems may investigate how to better support this reasoning
across both time and space through supporting more interactive
mechanisms for managing versions, which has shown success in
other contexts [70].

5 DISCUSSION
We now discuss how Meta-Manager is situated in the larger con-
text of making sense of code and its history, and the role meta-
information can play in that process. Prior work has investigated
how developers make sense of many variants of the same code
and its output [80] and the challenges in doing so – the authors
note that this foraging process involves managing similar yet dis-
connected information patches. We showcase Meta-Manager as
an improvement upon that model through extracting and utilizing
meta-information to serve as strong informational cues to both re-
duce the number of candidate patches to traverse through and to
connect the history into a larger, contextualized narrative. P2 noted
that they were essentially “recreating the story” of the code when
clicking from event label to event label to answer a question about

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Amber Horvath, Andrew Macvean, and Brad A. Myers

design rationale – notably, [80] also discusses this phenomenon
of information foraging being construed by users as assembling a
“story”, suggesting that our event labels may serve as one way of
structuring these “stories”.

When considering code history as a story, this is not dissimilar
to the concept of “literate programming” and its philosophies, orig-
inally proposed by Donald Knuth [39]. Knuth believed that code
should be more naturalistic, written as an expression of an author’s
reasoning behind solving a computational problem. Programming,
in its current state, typically relies on documentation as a way
of translating between the lower-level code and its higher-level
semantic meaning, with this documentation often spread across
various platforms and represented using different modalities such
as inline code comments, Git commit messages, GitHub pull re-
quests and issues, and formal design documentation. With the rise
of LLMs for code generation, there is a new platform and modality
for these natural language descriptions of code, which our work has
shown are worth capturing as they can be used for reasoning about
design rationale. The not-so-distant future of software engineering
may consist primarily of this prompting for generating and modi-
fying code – a future in which whole programs may be constructed
predominantly through prompts that can be translated into code
narratives not unlike the literate programs Knuth described. In this
way, the code serves to describe the lower-level implementation but
the higher-level goals and reasoning are communicated through
the prompts. Meta-Manager begins to probe at how these forms of
code-related meta-information may be captured and presented to
help construct these narratives.

To the best of our knowledge, our work with Meta-Manager
and its study are the first pieces of research to investigate the
provenance of AI-generated code. Prior research has cited the im-
portance of this research thread in order to answer questions such
as “does AI-generated code leads to fewer (or more?) build breaks”,
“what prompts were used to create this code”, and if AI-generated
code should be under more or less scrutiny during code reviews
[7, 12]. These questions, in theory, could be investigated usingMeta-
Manager through following the development of AI-generated code
throughout its life-cycle. Meta-Manager also demonstrates that,
through capturing AI code-generation provenance information,
other questions and activities can be supported, such as reasoning
about code design rationale. Considering more software will likely
have source code written by LLMs, tooling support for maintain-
ing and comprehending this code, along with reviewing it for its
applicability and correctness, are likely to become more important.

In summarizing our findings and their implications, we find
support for the claims that (a) code history data, when properly
versioned, contextualized with meta-information, scaled, visual-
ized, and prioritized to support easier navigation, can be used by
developers to reason not only about what, how, and when some
change happened, but also why; (b) capturing information traces
during the AI code-generation process can be used to support this
reasoning; and (c), more generally, some information produced as
a by-product of authoring code can be mapped to later develop-
ers’ information needs. Previous systems have captured some of
this meta-information, such as Mylyn [20], and typically used this
information to support code authoring tasks, such as localizing
code patches to change, but were less concerned with questions of

code comprehension by later developers. Other systems, such as
the wide array of code visualization systems [88, 90], usually did
not imbue additional information about the context in which the
code was created. We show, with Meta-Manager, how these two
approaches can be complementary to one another in supporting
developer sensemaking tasks.

6 LIMITATIONS AND THREATS TO VALIDITY
Our study is limited by the fact that we did not have a control con-
dition to compare our results to. While the questions that we asked
may be impossible to answer without a tool like Meta-Manager,
without a control condition, it is difficult to make any definitive
claims about whether or not a participant’s ability to answer these
questions would result in some measurable difference in terms of
code comprehension. Given the amount of prior work claiming that
these are important questions and no question received a “never
asked” in the post-task survey, we have evidence to suggest that
supporting these questions is useful.

Our study is also limited by the fact that we used an artificial
code base, as opposed to a code base generated with prolonged
usage of the tool. We feel that choosing to have an artificial code
base such that we can simulate the real experience of having many
code versions to navigate through allows us to better ensure that
Meta-Manager is scalable to support development on a real code
project. We attempted to mitigate the potential biases introduced
through artificially creating the code base by ensuring that our
code changes were produced in a way consistent with real world
code editing practices, diversifying where our code came from,
and asking our participants whether the code from the study was
consistent with code they have seen in their own work. Future
work would benefit from assessing how the code versioning works
for information seeking by many developers working on the same
code base over time.

An additional limitation is that the questions asked during the
study were made up by the first author. While each question was
derived from previously-reported information needs developers
have about unfamiliar code and participants rated each question
as a question they at least sometimes ask, additional studies may
investigate how developers can use Meta-Manager to answer their
own questions about their code in order to better understand how
the system supports answering real developers’ questions that were
not asked in this study. Further, the study in its current form cannot
answer how often Meta-Manager would be useful, as we did not
capture the full breadth of questions it can be used to answer and the
frequency developers ask those types of questions. Previous work,
such as [55], and our own reports from our participants suggest that
these questions occur semi-frequently and are challenging to an-
swer – nonetheless, future work would improve upon our work by
investigating to what extent the breadth of developers’ information-
seeking behaviors are supported with Meta-Manager, and what
extensions to Meta-Manager might help it answer more questions.
Our study, instead, focuses on to what extent Meta-Manager and
its features do work for answering some of the questions we know
from prior literature are difficult to answer.

Meta-Manager: A Tool for Collecting and Exploring Meta Information about Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

7 FUTUREWORK
Our lab study provided some evidence that Meta-Manager helps
developers answer what have historically been hard-to-answer
questions about code. However, this was in the context of a de-
veloper joining an unfamiliar code base with no real contextual
knowledge of the code or its history — while this allowed us to
best assess how well the system works in assisting developers in
answering these questions in, arguably, the most difficult situation,
future work would benefit from seeing howMeta-Manager helps de-
velopers when they are working on their own code. Open questions
remain in this situation — given developers’ own mental models of
their code base and, most likely, its history, one can imagine that
usage of Meta-Manager may be different, as developers’ questions
about the code base may become more specific since they have
more information to work off of. Improvements to Meta-Manager
to support more personalized information may be a richer querying
system that supports project-specific terms or allowing users to
define their own “events” that the system will automatically log
as an event of interest. Prior work has supported similar team and
project-specific tagging of information in software projects to help
with source code navigation [82, 84] – extracting project-specific
tagged events as timeline events may also help developers with
navigating between code versions.

Currently, Meta-Manager does not support annotating or sharing
specific code versions with collaborators, or saving specific query,
or filter settings. There may be situations in which it would be
useful to keep track of that information, such as for communicating
with collaborators about how and when a bug was introduced [49],
annotating a version with specific output values to communicate
about a bug [30], or for identifying a code version that a developer
may be considering reverting back to [35, 36]. This meta-meta in-
formation (meta-information about the use of the meta-information
about the code) could be useful to help others perform similar sense-
making to the current user, based on research [19] that multiple
people through time often need to repeat previous people’s work.

8 CONCLUSION
Understanding code and developing tools for assisting in that pro-
cess is becoming more important than ever. We present Meta-
Manager as a tool designed to help with answering historically chal-
lenging questions related to code design and history that are unan-
swerable without the provenance information that our tool automat-
ically collects, including AI code-generation meta-information, the
first of its type to show the utility of that information for reasoning
about design. The success of Meta-Manager in allowing developers
in our study to answer 85.7% of the otherwise un-answerable ques-
tions suggests that such approaches should be further investigated
to support future developers. As AI permeates more creative work
beyond programming, including text and picture generation, Meta-
Manager points to a way to keep track of more context about what
happened, which can make future systems more maintainable and
understandable.

ACKNOWLEDGMENTS
This research was funded in part by the NSF under grant CCF-
2007482 and by gifts from Google. Any opinions, findings, and

conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of the
sponsors. In addition, we would like to thank River Hendriksen and
Ringo the Pomeranian for inspiring our scenario, our participants,
and our reviewers for their thoughtful input and feedback.

REFERENCES
[1] Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini. 2016. A Study

of Visual Studio Usage in Practice. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. 124–134.
https://doi.org/10.1109/SANER.2016.39

[2] Jeff Baker, Donald Jones, and Jim Burkman. 2009. Using visual representations of
data to enhance sensemaking in data exploration tasks. Journal of the Association
for Information Systems 10, 7 (2009), 2.

[3] Sebastian Baltes, Richard Kiefer, and Stephan Diehl. 2017. Attribution Required:
Stack Overflow Code Snippets in GitHub Projects. In 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering Companion (ICSE-C). 161–163.
https://doi.org/10.1109/ICSE-C.2017.99

[4] Sebastian Baltes, Christoph Treude, and StephanDiehl. 2019. SOTorrent: Studying
the Origin, Evolution, and Usage of Stack Overflow Code Snippets. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
191–194. https://doi.org/10.1109/MSR.2019.00038

[5] Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. 2010. Codebook:
Discovering and Exploiting Relationships in Software Repositories. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering - Volume
1 (Cape Town, South Africa) (ICSE ’10). Association for Computing Machinery,
New York, NY, USA, 125–134. https://doi.org/10.1145/1806799.1806821

[6] Andrew Begel and Beth Simon. 2008. Novice Software Developers, All over Again.
In Proceedings of the Fourth International Workshop on Computing Education
Research (Sydney, Australia) (ICER ’08). Association for Computing Machinery,
New York, NY, USA, 3–14. https://doi.org/10.1145/1404520.1404522

[7] Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini
Kalliamvakou, Travis Lowdermilk, and Idan Gazit. 2023. Taking Flight with
Copilot: Early insights and opportunities of AI-powered pair-programming tools.
Queue 20, 6 (jan 2023), 35–57. https://doi.org/10.1145/3582083

[8] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola. 2010. Code Bubbles: A Working Set-Based Interface for Code Un-
derstanding and Maintenance. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Asso-
ciation for Computing Machinery, New York, NY, USA, 2503–2512. https:
//doi.org/10.1145/1753326.1753706

[9] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In CHI ’09 (Boston, MA, USA) (CHI ’09). Association
for Computing Machinery, New York, NY, USA, 1589–1598. https://doi.org/10.
1145/1518701.1518944

[10] Michael J. Coblenz, Amy J. Ko, and Brad A. Myers. 2006. JASPER: An Eclipse
Plug-in to Facilitate Software Maintenance Tasks. In Proceedings of the 2006
OOPSLA Workshop on Eclipse Technology EXchange (Portland, Oregon, USA)
(eclipse ’06). Association for Computing Machinery, New York, NY, USA, 65–69.
https://doi.org/10.1145/1188835.1188849

[11] D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth. 2005. Hipikat: a project
memory for software development. IEEE Transactions on Software Engineering
31, 6 (2005), 446–465. https://doi.org/10.1109/TSE.2005.71

[12] Cleidson R. B. de Souza, Gema Rodríguez-Pérez, Manaal Basha, Dongwook Yoon,
and Ivan Beschastnikh. 2024. The Fine Balance Between Helping With Your Job
And Taking It: AI Code Assistants Come To The Fore. IEEE Software (2024), 1–6.
https://doi.org/10.1109/MS.2024.3357787

[13] Robert Deline, Mary Czerwinski, and George Robertson. 2005. Easing program
comprehension by sharing navigation data. In VLHCC 2005. IEEE, New York City,
NY, USA, 241–248. https://doi.org/10.1109/VLHCC.2005.32

[14] Google Developers. 2021. Cloud Firestore: Store and sync app data at global scale.
Google LLC. Retrieved September 3, 2023 from https://firebase.google.com/
products/firestore

[15] Ekwa Duala-Ekoko and Martin P. Robillard. 2012. Asking and answering ques-
tions about unfamiliar APIs: An exploratory study. In ICSE 2012. IEEE, New York
City, NY, USA, 266–276.

[16] S.C. Eick, J.L. Steffen, and E.E. Sumner. 1992. Seesoft-a tool for visualizing line
oriented software statistics. IEEE Transactions on Software Engineering 18, 11
(1992), 957–968. https://doi.org/10.1109/32.177365

[17] Daniel S. Eisenberg, Jeffrey Stylos, and Brad A. Myers. 2010. Apatite: A New
Interface for Exploring APIs. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Association for
Computing Machinery, New York, NY, USA, 1331–1334. https://doi.org/10.1145/

https://doi.org/10.1109/SANER.2016.39
https://doi.org/10.1109/ICSE-C.2017.99
https://doi.org/10.1109/MSR.2019.00038
https://doi.org/10.1145/1806799.1806821
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/3582083
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1188835.1188849
https://doi.org/10.1109/TSE.2005.71
https://doi.org/10.1109/MS.2024.3357787
https://doi.org/10.1109/VLHCC.2005.32
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://doi.org/10.1109/32.177365
https://doi.org/10.1145/1753326.1753525
https://doi.org/10.1145/1753326.1753525

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Amber Horvath, Andrew Macvean, and Brad A. Myers

1753326.1753525
[18] Facebook. 2023. React - A JavaScript library for building user interfaces. https:

//reactjs.org/
[19] Kristie Fisher, Scott Counts, and Aniket Kittur. 2012. Distributed Sensemaking:

Improving Sensemaking by Leveraging the Efforts of Previous Users. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (Austin,
Texas, USA) (CHI ’12). Association for Computing Machinery, New York, NY,
USA, 247–256. https://doi.org/10.1145/2207676.2207711

[20] Thomas Fritz and Gail C Murphy. 2010. Using information fragments to answer
the questions developers ask. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1. 175–184.

[21] Thomas Fritz, Jingwen Ou, Gail C. Murphy, and Emerson Murphy-Hill. 2010. A
Degree-of-Knowledge Model to Capture Source Code Familiarity. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering - Volume
1 (Cape Town, South Africa) (ICSE ’10). Association for Computing Machinery,
New York, NY, USA, 385–394. https://doi.org/10.1145/1806799.1806856

[22] J. Froehlich and P. Dourish. 2004. Unifying artifacts and activities in a visual tool
for distributed software development teams. In Proceedings. 26th International
Conference on Software Engineering. 387–396. https://doi.org/10.1109/ICSE.2004.
1317461

[23] Max Goldman and Robert C. Miller. 2009. Codetrail: Connecting source code
and web resources. Journal of Visual Languages & Computing 20, 4 (2009), 223–
235. https://doi.org/10.1016/j.jvlc.2009.04.003 Special Issue on Best Papers from
VL/HCC2008.

[24] Anja Guzzi, Lile Hattori, Michele Lanza, Martin Pinzger, and Arie van Deursen.
2011. Collective Code Bookmarks for Program Comprehension. In 2011 IEEE 19th
International Conference on Program Comprehension. 101–110. https://doi.org/10.
1109/ICPC.2011.19

[25] Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 2019.
9.6 Million Links in Source Code Comments: Purpose, Evolution, and Decay.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
1211–1221. https://doi.org/10.1109/ICSE.2019.00123

[26] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
2019. Managing Messes in Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3290605.3300500

[27] Reid Holmes and Andrew Begel. 2008. Deep intellisense: a tool for rehydrat-
ing evaporated information. In Proceedings of the 2008 international working
conference on Mining software repositories. 23–26.

[28] Amber Horvath,Michael Xieyang Liu, River Hendriksen, Connor Shannon, Emma
Paterson, Kazi Jawad, AndrewMacvean, and Brad A. Myers. 2022. Understanding
How Programmers Can Use Annotations on Documentation. In Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans,
LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3491102.3502095

[29] Amber Horvath, Andrew Macvean, and Brad A. Myers. 2023. Support for Long-
Form Documentation Authoring and Maintenance. In 2023 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). 109–114. https:
//doi.org/10.1109/VL-HCC57772.2023.00020

[30] Amber Horvath, Brad Myers, Andrew Macvean, and Imtiaz Rahman. 2022. Using
Annotations for Sensemaking About Code. In Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology (Bend, OR, USA) (UIST ’22).
Association for Computing Machinery, New York, NY, USA, Article 61, 16 pages.
https://doi.org/10.1145/3526113.3545667

[31] Daqing Hou, Patricia Jablonski, and Ferosh Jacob. 2009. CnP: Towards an en-
vironment for the proactive management of copy-and-paste programming. In
2009 IEEE 17th International Conference on Program Comprehension. 238–242.
https://doi.org/10.1109/ICPC.2009.5090049

[32] Peiling Jiang, Fuling Sun, and Haijun Xia. 2023. Log-it: Supporting Program-
ming with Interactive, Contextual, Structured, and Visual Logs. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA,
Article 594, 16 pages. https://doi.org/10.1145/3544548.3581403

[33] An Ju, Hitesh Sajnani, Scot Kelly, and Kim Herzig. 2021. A case study of onboard-
ing in software teams: Tasks and strategies. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 613–623.

[34] Mik Kersten and Gail C. Murphy. 2005. Mylar: A Degree-of-Interest Model for
IDEs. In Proceedings of the 4th International Conference on Aspect-Oriented Software
Development (Chicago, Illinois) (AOSD ’05). Association for Computing Machin-
ery, New York, NY, USA, 159–168. https://doi.org/10.1145/1052898.1052912

[35] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 1265–1276.
https://doi.org/10.1145/3025453.3025626

[36] Mary Beth Kery, Bonnie E. John, Patrick O’Flaherty, Amber Horvath, and Brad A.
Myers. 2019. Towards Effective Foraging by Data Scientists to Find Past Analysis

Choices. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300322

[37] Raphaël Khoury, Anderson R Avila, Jacob Brunelle, and Baba Mamadou Camara.
2023. How Secure is Code Generated by ChatGPT? arXiv preprint arXiv:2304.09655
(2023).

[38] Aniket Kittur, Andrew M. Peters, Abdigani Diriye, Trupti Telang, and Michael R.
Bove. 2013. Costs and benefits of structured information foraging. In CHI 2013.
ACM, New York, NY, USA, 2989–2998.

[39] Donald Ervin Knuth. 1984. Literate programming. The computer journal 27, 2
(1984), 97–111.

[40] Amy Ko and Bob Uttl. 2003. Individual differences in program comprehension
strategies in unfamiliar programming systems. In 11th Annual Workshop on
Program Comprehension. IEEE, New York, NY, USA, 175–184. https://doi.org/10.
1109/WPC.2003.1199201

[41] Amy J. Ko, Htet Aung, and Brad A. Myers. 2005. Eliciting Design Requirements
for Maintenance-Oriented IDEs: A Detailed Study of Corrective and Perfective
Maintenance Tasks. In Proceedings of the 27th International Conference on Software
Engineering (St. Louis, MO, USA) (ICSE ’05). Association for Computing Machin-
ery, New York, NY, USA, 126–135. https://doi.org/10.1145/1062455.1062492

[42] Amy J Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in collo-
cated software development teams. In 29th International Conference on Software
Engineering (ICSE’07). IEEE, 344–353.

[43] Amy J. Ko and Brad A. Myers. 2004. Designing the Whyline: A Debugging
Interface for Asking Questions about Program Behavior. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Vienna, Austria)
(CHI ’04). Association for Computing Machinery, New York, NY, USA, 151–158.
https://doi.org/10.1145/985692.985712

[44] Amy J. Ko and Brad A. Myers. 2008. Debugging Reinvented: Asking and An-
swering Why and Why Not Questions about Program Behavior. In Proceedings
of the 30th International Conference on Software Engineering (Leipzig, Germany)
(ICSE ’08). Association for Computing Machinery, New York, NY, USA, 301–310.
https://doi.org/10.1145/1368088.1368130

[45] Amy J. Ko and Brad A. Myers. 2009. Finding Causes of Program Output with
the Java Whyline. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Boston, MA, USA) (CHI ’09). Association for Computing
Machinery, New York, NY, USA, 1569–1578. https://doi.org/10.1145/1518701.
1518942

[46] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant In-
formation during Software Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (2006), 971–987. https://doi.org/10.1109/TSE.2006.116

[47] Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007.
Program comprehension as fact finding. In ESEC-FSE 2007. ACM, New York, NY,
USA, 361–270.

[48] Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-Answer Questions about
Code. In Evaluation and Usability of Programming Languages and Tools (Reno,
Nevada) (PLATEAU ’10). Association for Computing Machinery, New York, NY,
USA, Article 8, 6 pages. https://doi.org/10.1145/1937117.1937125

[49] Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle
Rector, and Scott D. Fleming. 2013. How Programmers Debug, Revisited: An Infor-
mation Foraging Theory Perspective. IEEE Transactions on Software Engineering
39, 2 (2013), 197–215. https://doi.org/10.1109/TSE.2010.111

[50] Jenny T. Liang, Maryam Arab, Minhyuk Ko, Amy J. Ko, and Thomas D. La-
Toza. 2023. A Qualitative Study on the Implementation Design Decisions
of Developers. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 435–447.
https://doi.org/10.1109/ICSE48619.2023.00047

[51] J. T. Liang, C. Yang, and B. A. Myers. 2024. A Large-Scale Survey on the Usability
of AI Programming Assistants: Successes and Challenges. In 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE). IEEE Computer Society,
Los Alamitos, CA, USA, 605–617. https://doi.ieeecomputersociety.org/

[52] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. arXiv preprint arXiv:2305.01210 (2023).

[53] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng,
Shaun Burley, Cynthia Taylor, Aniket Kittur, and Brad A. Myers. 2019. Unakite:
Scaffolding Developers’ Decision-Making Using the Web. In UIST 2019. ACM,
New York, NY, USA, 67–80.

[54] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2021. To Reuse or Not
To Reuse? A Framework and System for Evaluating Summarized Knowledge.
Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article 166 (apr 2021), 35 pages.
https://doi.org/10.1145/3449240

[55] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On the
Comprehension of Program Comprehension. Transactions on Software Engineer-
ing 23 (2014), 1–37. Issue 4. https://doi.org/10.1145/2622669

[56] Microsoft. 2023. GitHub. Microsoft. Retrieved September 11, 2023 from https:
//github.com

https://doi.org/10.1145/1753326.1753525
https://reactjs.org/
https://reactjs.org/
https://doi.org/10.1145/2207676.2207711
https://doi.org/10.1145/1806799.1806856
https://doi.org/10.1109/ICSE.2004.1317461
https://doi.org/10.1109/ICSE.2004.1317461
https://doi.org/10.1016/j.jvlc.2009.04.003
https://doi.org/10.1109/ICPC.2011.19
https://doi.org/10.1109/ICPC.2011.19
https://doi.org/10.1109/ICSE.2019.00123
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3491102.3502095
https://doi.org/10.1109/VL-HCC57772.2023.00020
https://doi.org/10.1109/VL-HCC57772.2023.00020
https://doi.org/10.1145/3526113.3545667
https://doi.org/10.1109/ICPC.2009.5090049
https://doi.org/10.1145/3544548.3581403
https://doi.org/10.1145/1052898.1052912
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1109/WPC.2003.1199201
https://doi.org/10.1109/WPC.2003.1199201
https://doi.org/10.1145/1062455.1062492
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1109/TSE.2010.111
https://doi.org/10.1109/ICSE48619.2023.00047
https://doi.ieeecomputersociety.org/
https://doi.org/10.1145/3449240
https://doi.org/10.1145/2622669
https://github.com
https://github.com

Meta-Manager: A Tool for Collecting and Exploring Meta Information about Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[57] Microsoft. 2023. TypeScript: JavaScript with Syntax for Types.Microsoft. Retrieved
September 10, 2023 from https://www.typescriptlang.org/

[58] Microsoft. 2023. Visual Studio Code. Microsoft. Retrieved September 10, 2023
from https://code.visualstudio.com/

[59] G.C.Murphy,M. Kersten, and L. Findlater. 2006. How are Java software developers
using the Eclipse IDE? IEEE Software 23, 4 (2006), 76–83. https://doi.org/10.1109/
MS.2006.105

[60] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad
Myers. 2023. In-IDE Generation-based Information Support with a Large Lan-
guage Model. arXiv preprint arXiv:2307.08177 (2023).

[61] Mathieu Nassif and Martin P. Robillard. 2017. Revisiting Turnover-Induced
Knowledge Loss in Software Projects. In 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 261–272. https://doi.org/10.1109/
ICSME.2017.64

[62] Observable. 2023. D3 by Observable | The JavaScript library for bespoke data
visualization. d3js.org

[63] Soya Park, Amy X. Zhang, and David R. Karger. 2018. Post-literate Program-
ming: Linking Discussion and Code in Software Development Teams. In Adjunct
Proceedings of the 31st Annual ACM Symposium on User Interface Software and
Technology (Berlin, Germany) (UIST ’18 Adjunct). Association for Computing
Machinery, New York, NY, USA, 51–53. https://doi.org/10.1145/3266037.3266098

[64] Chris Parnin. 2013. Programmer Interrupted. ninlabs research. Retrieved Novem-
ber 21, 2023 from https://blog.ninlabs.com/2013/01/programmer-interrupted/

[65] Chris Parnin and Robert DeLine. 2010. Evaluating Cues for Resuming Interrupted
Programming Tasks. Association for Computing Machinery, New York, NY, USA,
93–102. https://doi.org/10.1145/1753326.1753342

[66] Chris Parnin, Carsten Görg, and Spencer Rugaber. 2010. CodePad: Interactive
Spaces for Maintaining Concentration in Programming Environments. In Pro-
ceedings of the 5th International Symposium on Software Visualization (Salt Lake
City, Utah, USA) (SOFTVIS ’10). Association for Computing Machinery, New York,
NY, USA, 15–24. https://doi.org/10.1145/1879211.1879217

[67] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto
Bacchelli. 2018. Information Needs in Contemporary Code Review. Proc. ACM
Hum.-Comput. Interact. 2, CSCW, Article 135 (nov 2018), 27 pages. https://doi.
org/10.1145/3274404

[68] Peter Pirolli and Stuart Card. 1995. Information Foraging in Information Access
Environments. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Denver, Colorado, USA) (CHI ’95). ACM Press/Addison-
Wesley Publishing Co., USA, 51–58. https://doi.org/10.1145/223904.223911

[69] Ben Popper and David Gibson. 2021. How often do people actually copy and
paste from Stack Overflow? Now we know. Retrieved September 13, 2023
from https://stackoverflow.blog/2021/12/30/how-often-do-people-actually-copy-
and-paste-from-stack-overflow-now-we-know/

[70] Eric Rawn, Jingyi Li, Eric Paulos, and Sarah E. Chasins. 2023. Understanding
Version Control as Material Interaction with Quickpose. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems (Hamburg, Germany)
(CHI ’23). Association for Computing Machinery, New York, NY, USA, Article
126, 18 pages. https://doi.org/10.1145/3544548.3581394

[71] Peter C. Rigby, Yue Cai Zhu, Samuel M. Donadelli, and Audris Mockus. 2016.
Quantifying and mitigating turnover-induced knowledge loss: case studies of
chrome and a project at avaya. In Proceedings of the 38th International Conference
on Software Engineering (Austin, Texas) (ICSE ’16). Association for Computing
Machinery, New York, NY, USA, 1006–1016. https://doi.org/10.1145/2884781.
2884851

[72] Martin P. Robillard. 2021. Turnover-Induced Knowledge Loss in Practice. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 1292–1302. https://doi.org/10.1145/3468264.3473923

[73] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How do
professional developers comprehend software?. In ICSE 2012. ACM, New York,
NY, USA, 632–542. https://doi.org/10.1109/ICSE.2012.6227188

[74] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers
search for code: a case study. In Proceedings of the 2015 10th joint meeting on
foundations of software engineering. 191–201.

[75] Ben Shneiderman. 1980. Software psychology: Human factors in computer and
information systems (Winthrop computer systems series). Winthrop Publishers.

[76] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A Fluent Code Ex-
plorer for Data Wrangling. In The 34th Annual ACM Symposium on User Interface
Software and Technology. 198–207.

[77] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2008. Asking and Answering
Questions during a Programming Change Task. IEEE Transactions on Software
Engineering 34, 4 (2008), 434–451. https://doi.org/10.1109/TSE.2008.26

[78] Zéphyrin Soh, Foutse Khomh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol.
2018. Noise in Mylyn interaction traces and its impact on developers and recom-
mendation systems. Empirical Software Engineering 23, 2 (April 2018), 645–692.
https://doi.org/10.1007/s10664-017-9529-x

[79] Jeongju Sohn and Shin Yoo. 2017. FLUCCS: Using Code and Change Metrics to
Improve Fault Localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA
2017). Association for Computing Machinery, New York, NY, USA, 273–283.
https://doi.org/10.1145/3092703.3092717

[80] Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal, Charles Hill, Anita Sarma, David
Piorkowski, and Margaret Burnett. 2016. Foraging among an overabundance of
similar variants. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. 3509–3521.

[81] Captain Stack. [n. d.]. Captain Stack - Code suggestion for VSCode. Retrieved
September 13, 2023 from https://github.com/hieunc229/copilot-clone

[82] Margaret-Anne Storey, Jody Ryall, Janice Singer, Del Myers, Li-Te Cheng, and
Michael Muller. 2009. How Software Developers Use Tagging to Support Re-
minding and Refinding. IEEE Transactions on Software Engineering 35, 4 (2009),
470–483. https://doi.org/10.1109/TSE.2009.15

[83] Siddharth Subramanian and Reid Holmes. 2013. Making sense of online code
snippets. In 2013 10th Working Conference on Mining Software Repositories (MSR).
85–88. https://doi.org/10.1109/MSR.2013.6624012

[84] Christoph Treude and Margaret-Anne Storey. 2012. Work Item Tagging: Com-
municating Concerns in Collaborative Software Development. IEEE Transactions
on Software Engineering 38, 1 (2012), 19–34. https://doi.org/10.1109/TSE.2010.91

[85] Fernanda B. Viégas, Martin Wattenberg, and Kushal Dave. 2004. Studying Co-
operation and Conflict between Authors with History Flow Visualizations. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Vienna, Austria) (CHI ’04). Association for Computing Machinery, New York,
NY, USA, 575–582. https://doi.org/10.1145/985692.985765

[86] April Yi Wang, Zihan Wu, Christopher Brooks, and Steve Oney. 2020. Callisto:
Capturing the "Why" by Connecting Conversations with Computational Narra-
tives. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376740

[87] Dakuo Wang, Judith S. Olson, Jingwen Zhang, Trung Nguyen, and Gary M.
Olson. 2015. DocuViz: Visualizing Collaborative Writing. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul,
Republic of Korea) (CHI ’15). Association for Computing Machinery, New York,
NY, USA, 1865–1874. https://doi.org/10.1145/2702123.2702517

[88] Moritz Wittenhagen, Christian Cherek, and Jan Borchers. 2016. Chronicler:
Interactive Exploration of Source Code History. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (San Jose, California, USA)
(CHI ’16). Association for Computing Machinery, New York, NY, USA, 3522–3532.
https://doi.org/10.1145/2858036.2858442

[89] Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. 2010. Understanding Feature
Evolution in a Family of Product Variants. In 2010 17th Working Conference on
Reverse Engineering. 109–118. https://doi.org/10.1109/WCRE.2010.20

[90] YoungSeok Yoon and Brad A. Myers. 2015. Semantic zooming of code change his-
tory. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 95–99. https://doi.org/10.1109/VLHCC.2015.7357203

[91] YoungSeok Yoon and Brad A. Myers. 2015. Supporting Selective Undo in a
Code Editor. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. 223–233. https://doi.org/10.1109/ICSE.2015.43

[92] Young Seok Yoon and Brad A. Myers. 2014. A longitudinal study of programmers’
backtracking. In 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 101–108. https://doi.org/10.1109/VLHCC.2014.6883030

[93] Tianyi Zhang, Di Yang, Crista Lopes, and Miryung Kim. 2019. Analyzing and
Supporting Adaptation of Online Code Examples. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE). 316–327. https://doi.org/10.
1109/ICSE.2019.00046

https://www.typescriptlang.org/
https://code.visualstudio.com/
https://doi.org/10.1109/MS.2006.105
https://doi.org/10.1109/MS.2006.105
https://doi.org/10.1109/ICSME.2017.64
https://doi.org/10.1109/ICSME.2017.64
d3js.org
https://doi.org/10.1145/3266037.3266098
https://blog.ninlabs.com/2013/01/programmer-interrupted/
https://doi.org/10.1145/1753326.1753342
https://doi.org/10.1145/1879211.1879217
https://doi.org/10.1145/3274404
https://doi.org/10.1145/3274404
https://doi.org/10.1145/223904.223911
https://stackoverflow.blog/2021/12/30/how-often-do-people-actually-copy-and-paste-from-stack-overflow-now-we-know/
https://stackoverflow.blog/2021/12/30/how-often-do-people-actually-copy-and-paste-from-stack-overflow-now-we-know/
https://doi.org/10.1145/3544548.3581394
https://doi.org/10.1145/2884781.2884851
https://doi.org/10.1145/2884781.2884851
https://doi.org/10.1145/3468264.3473923
https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1109/TSE.2008.26
https://doi.org/10.1007/s10664-017-9529-x
https://doi.org/10.1145/3092703.3092717
https://github.com/hieunc229/copilot-clone
https://doi.org/10.1109/TSE.2009.15
https://doi.org/10.1109/MSR.2013.6624012
https://doi.org/10.1109/TSE.2010.91
https://doi.org/10.1145/985692.985765
https://doi.org/10.1145/3313831.3376740
https://doi.org/10.1145/2702123.2702517
https://doi.org/10.1145/2858036.2858442
https://doi.org/10.1109/WCRE.2010.20
https://doi.org/10.1109/VLHCC.2015.7357203
https://doi.org/10.1109/ICSE.2015.43
https://doi.org/10.1109/VLHCC.2014.6883030
https://doi.org/10.1109/ICSE.2019.00046
https://doi.org/10.1109/ICSE.2019.00046

	Abstract
	1 Introduction
	2 Related Work
	2.1 Code Comprehension
	2.2 Code History

	3 Overview of Meta-Manager
	3.1 Developer Information Needs
	3.2 Scenario
	3.3 Detailed Meta-Manager Design
	3.4 Implementation

	4 Lab Study
	4.1 Method
	4.2 Participants
	4.3 Quantitative Results
	4.4 Qualitative Results

	5 Discussion
	6 Limitations and Threats to Validity
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

